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Abstract
We study a stationary ‘black’ brane in M/superstring theory. Assuming BPS-
type relations between the first-order derivatives of metric functions, we present
general stationary black brane solutions with a time-like Killing vector for
the Einstein equations in D-dimensions. The solutions are given by a few
independent harmonic equations (and plus the Poisson equation). General
solutions are constructed by superposition of a complete set of those harmonic
functions. Using the hyperspherical coordinate system, we explicitly give
the solutions in 11-dimensional M theory for the case with M2⊥ M2⊥ M2
intersecting branes. Compactifying these solutions into five dimensions, we
show that these solutions include the supersymmetric black ring solution.
We prove that the solutions preserve the 1/8 supersymmetry if the gravi-
electromagnetic field F ij , which is a rotational part of gravity, is self-dual, or
to add the additional constraint for the integral constants.

PACS numbers: 11.25.Yb, 98.80.Cq

1. Introduction

Black holes are now one of the most important subjects in string theory. The Beckenstein-
Hawking black hole entropy of an extreme black hole is obtained in string theory by statistical
counting of the corresponding microscopic states [1]. While, we have found several interesting
black hole solutions in supergravity theories [2–7], which are obtained as an effective theory
of a superstring model in a low energy limit. We also know black hole solutions in a higher-
dimensional spacetime [8, 9], which play a key role in a unified theory such as string theory.
In higher dimensions, because there is no uniqueness theorem of black holes [10–12], we
have a variety of ‘black’ objects such as a black brane [13–16]. One of the most remarkable
solutions is a black ring, whose horizon has a topology of S1 × S2 [17].
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Among such ‘black’ objects, supersymmetric ones are very important. The black hole
solutions in a supergravity include the higher-order effects of a string coupling constant,
although these are solutions in a low energy limit. On the other hand, the counting of states
of corresponding branes is performed at the lowest order of a string coupling. The results
of these two calculations need not coincide each other. However, if there is supersymmetry,
these should be the same because the numbers of dynamical freedom cannot be different in
these BPS representations. Therefore, supersymmetric black hole (or black ring) solutions are
often discussed in many literatures [18–22].

The classification of supersymmetric solutions in minimal N = 2 supergravity in D = 4
was first performed by a time-like or null Killing spinor [23]. Recently, solutions in minimal
N = 1 supergravity in D = 5 have been classified into two classes by use of G-structure
analysis [24]. The six-dimensional minimal supergravity has also been discussed [25].

However, the fundamental theory is constructed in either ten or eleven dimensions.
When we discuss the entropy of black holes, we have to show the relation between those
supersymmetric black holes and more fundamental ‘black’ branes in either D = 10 or 11, from
which we obtain ‘black’ holes (or rings) via compactification. The entropy is microscopically
described by the charges of branes [26]. A supersymmetric rotating solution is obtained by
compactification from M or type II supergravity [27]. The supersymmetric rotating black
ring solution is found [28, 29]. Such solutions are obtained also in lower dimensions. These
solutions are in fact new classes of rotating solutions in four- or five-dimensional supergravity.
The existence of such solutions suggests that the uniqueness theorem of black holes is no
longer valid even in supersymmetric spacetime if the dimension is five or higher [30]. Thus
we may need to construct more generic ‘black’ brane solutions in the fundamental theory and
the black holes by some compactification. M-theory is the best candidate for such a unified
theory. Since its low energy limit coincides with the 11-dimensional supergravity, it provides
a natural framework to study ‘black’ brane or BPS brane solutions.

In this paper we study a class of intersecting brane solutions in D-dimensions with a
(d − 1)-dimensional transverse conformally flat space. We start with a generic form of
the metric and solve the field equations of the supergravity (the Einstein equations and the
equations for form fields). Assuming the intersection rule for the intersecting branes, which
is the same as that derived in a spherically symmetric case [31], we derive the equations for
each metric.

2. Basic equations for a stationary spacetime with branes

We first present the basic equations for a stationary spacetime with intersecting branes and
describe how to construct generic solutions. We consider the following bosonic sector of a
low energy effective action of superstring theory or M-theory in D dimensions (D � 11):

S = 1

16πGD

∫
dDX

√−g

[
R − 1

2
(∇ϕ)2 −

∑
A

1

2 · nA!
eaAϕF 2

nA

]
− (C.S), (1)

where R is the Ricci scalar of a spacetime metric gµν, FnA is the field strength of an arbitrary
form with a degree nA(�D/2) and aA is its coupling constant with a dilaton field ϕ. Each
index A describes a different type of brane. The term of (C.S) is the Chern–Simon term, thus
we find the Chern–Simon term in the M-theory as

(CS)M = 1

4! · 4πG11

∫
C3 ∧ F4 ∧ F4, (2)
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where C3 is a 3-form gauge field and F4 is a field strength of the 3-form gauge field. Although
we leave the spacetime dimension D free, the present action is most suitable for describing
the bosonic part of D = 10 or D = 11 supergravity.

As for a metric form for a spacetime with intersecting branes, we assume the following
metric form:

ds2 = −e2ξ (dt + A)2 +
d−1∑
i=1

e2η dx2
i +

p∑
α=1

e2ζα dy2
α, (3)

where D = d + p and the dual basis θÂ is given by

θ t̂ = eξ (dt + A), θ î = eη dxi, θ α̂ = eζα dyα. (4)

This metric form includes rotation of spacetime. Since we are interested in a stationary
solution, we assume that the metric components f,A = Ai dxi, ξ, η and ζα depend only on
the spatial coordinates xi in d-dimensions, which are given by {t, xi(i = 1, 2, . . . , d − 1)}. In
this setting, we set each brane A in a submanifold of p-spatial dimensions, whose coordinates
are given by {yα(α = 1, 2, . . . , p)}. Note that the solution in this metric form is invariant
under the gauge transformation, A → A + d	, t → t − 	.

As for the nA-form field with a qA-brane, we assume that the source brane exists in the
coordinates

{
y1, . . . , yαqA

}
. The form field generated by an ‘electric’ charge is given by the

following form:

FnA = ∂jEA dxj ∧ dt ∧ dy1 ∧ · · · ∧ dyqA
+ ∂iB

A
j dxi ∧ dxj ∧ dy1 ∧ · · · ∧ dyqA

, (5)

where nA = qA + 2 and EA and BA
j are scalar and vector potentials. This setting automatically

guarantees the Bianchi identity.
We can also discuss the form field generated by a ‘magnetic’ charge by use of a dual

∗nA-field with ∗qA-brane, which is obtained by a dual transformation of the nA-field with a
qA-brane (∗nA ≡ D − nA, ∗qA ≡ ∗nA − 2). In other words, the field components of FnA

generated by a ‘magnetic’ charge are described by the same form of (5) of the dual field
∗FnA

= F∗nA
. We then treat F∗nA

, which is generated by a ‘magnetic’ charge, as another
independent form field with a different brane from FnA , which is generated by an ‘electric’
charge, when we sum up by the types of branes A.

We obtain our metric in D-dimensions as

ds2
D =

∏
A

H

qA+1
�A

A

[
−

∏
B

H
−2 D−2

�B

B (dt + A)2 +
d−1∑
i=1

dx2
i +

p∑
α=1

∏
A

H
−2 γαA

�A

A dy2
α

]
. (6)

where

�A = (qA + 1)(D − qA − 3) +
D − 2

2
a2

A,

γαA = δαA + qA + 1 =
{
D − 2 α = α2, . . . , αqA

0 otherwise
.

(7)

3. ‘Black’ brane solutions with M2–M2–M2 branes: the case of d = 5

We consider solutions in five dimensions via torus compactification. There are three M2-
branes. The metric in five dimensions is written by

ds̄2
5 = −�2

(
dt +

A
2

)2

+ �−1 ds2
E

4 , (8)
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where � = [H2H5(1 + f )]−1/3. The unknown functions HA(A = 2, 5),Ai and f satisfy the
following equations:

F (A)
ij ≡ 2HA

(
A[i∂j ]EA + ∂[iB

A
j ]

) = Fij + HAq
(A)
ij (9)

∂jq
(A)ij = ∂jF ij = 0 (10)

∂2HA = 1
2q

(B)
ij q(C)ij (11)

where Fij = ∂iAj − ∂jAi , and we get a constraint about HA as Qij = ∑
HXq

(X)
ij = 0.

In what follows, adopting the hyperspherical coordinates as a curvilinear coordinate
system, we show explicitly how to construct the exact solutions.

Now we look out the supersymmetric condition, which can be shown by the Killing spinor
equation for the Majorana spinor ε as

δψa =
[
eµ

a∂µ +
1

4
ωbc

aγbc +
1

288

(
γa

bcdf − 8δb
aγ

cdf
)
Fbcdf

]
ε = 0. (12)

Then we must choose the chiral condition

γ tα1α2 = γ tα3α4 = γ tα5α6 = 1, (13)

and the anti-self-dual for the deference between the Fij and F (A)
ij , i.e.,

F (A)
ij = Fij + HAq

(A)
ij , (14)

where F (A)
ij is a self-dual and q

(A)
ij is an anti-self-dual. Also q

(A)
ij must satisfy the

Qij =
∑
A

HAq
(A)
ij = 0, (15)

or we must choose Fij = F (A)
ij where F (A)

ij is self-dual.

4. Hyperpolorical coordinates

Our next example is the hyperpolorical coordinates (ξ, η, φ,ψ), which are defined by the
transformation

x1 + ix2 = R sinh ξ

cosh ξ − cos η
eiψ, x3 + ix4 = R sin η

cosh ξ − cos η
eiφ, (16)

where ξ � 0, 0 � η � π , and 0 � φ,ψ � 2π . This coordinates could be used to describe a
ring topology. In this case, the infinity corresponds to ξ = 0, which also describes one of the
symmetric axes.

The line element is given by

ds2
E

4 = R2

(cosh ξ − cos η)2
(dξ 2 + sinh2 ξ dψ2 + dη2 + sin2 η dφ2). (17)

We can find the general solution by using the hypergeometric function, but it is too
complicated. Thus we show the typical case with the BPS sate −qA

φ = qA
ψ = qA. The case is

already given by [29], named supersymmetric black ring solution, as

HA = 1 + (cosh ξ − cos η)

[
QA − qBqC

2R2
+

qBqC

4R2
(cosh ξ + cos η)

]
, (18)

where we assume the regularity on the symmetric axis. QA is an arbitrary constant.
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The spacial solutions for the rotating terms of the metric are

Aφ = − sin2 η

8R2

[∑
X

QXqX − qAqBqC(3 − cosh ξ − cos η)

]
(19)

Aψ = −1

2

∑
A

qA(cosh ξ − 1) − sinh2 ξ

8R2

[∑
X

QXqX − qAqBqC(3 − cosh ξ − cos η)

]
. (20)

This is a solution of supersymmetric black ring solutions which was introduced by Elvang
et al ([29]).

However we consider the condition of Qij = 0,Aφ and Aψ are vanishing. Non-rotating
black ring solution has a deficit angle, thus this solution is not a black hole solution.

5. Concluding remarks

In this paper, we have studied a stationary ‘black’ brane solution in M/superstring theory.
Assuming a BPS-type relation between the first-order derivatives of metric functions, we have
shown how to construct a stationary ‘black’ brane solution with a time-like Killing vector.

Using the hyperbipolor coordinate system, we present exact solutions in 11-dimensional
M theory for the case with M2⊥ M2⊥ M2 intersecting branes with Chern–Simons terms.
Compactifying these solutions into five dimensions, we show that these solutions include the
supersymmetric black ring solutions, but there is another constraint for the supersymmetry the
angular momentum of black ring is banishing.

Although we assume the BPS-type relations for the metric, we have to solve the elliptic-
type differential equations if we want to find most general solutions, especially non-BPS
spacetimes. For this purpose, we need a completely different approach such as a soliton
technique to generate new solutions [34].

We have found the BPS and non-BPS rotating asymptotically flat stringy black holes,
from which we may learn more about connections between microscopic and macroscopic
states of gravitating objects. In our framework, we consider a toroidally compactified string
theory, but one may embed the BMPV type geometry in M-theory compactified on generic
Calabi–Yau spaces, which would be more interesting.
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